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l. Introduction

At school, children are taught that the pre-history of humanity is divided into four ages:
Stone Age, Copper Age, Bronze Age, and Iron Age. The ages owe their names to the
four materials that were the precursors of humanity's development. During the 20th
and 21st centuries, the material that impacted human life the most was plastic. That’s
why researchers we are currently living in the Polymer Age, or as it appears in the

media and popular science and technology news, the Age of Plastics [1].

According to the new by BBC, based on industrial reports, polymer (plastic)
production soared from 2 million tons in 1950 to more than 400 million tons in 2020
[2]. Currently, the quality of life of humanity is closely related to the production of
polymers. Today, it is not possible to imagine a life without these materials. Among
the great variety of polymers currently available, the present work will focus its study
on a special type of polymers, the so called amphiphilic conetworks (APCNSs), which
are composed of covalently linked, otherwise immiscible hydrophilic and hydrophobic

polymer chains.

The first literatures regarding APCNs were published by Stadler [3] and Kennedy
et al. [4] in 1988, basing their investigation on conetworks consisting of poly(ethylene
oxide) and and polybutadiene, and methacryloyl-capped polyisobutylene and 2-
dimethylaminoethyl methacrylate, respectively. One of the most update and accurate

definition of these materials was provided by Erdodi and Kennedy [5,13]:

“Amphiphilic conetworks are two-component networks of covalently interconnected
hydrophilic/hydrophobic (HI/HO) phases of cocontinuous morphology; as such they
swell both in water and hydrocarbons and respond to changes in the medium by

morphological isomerisation (‘smart’ networks).”

Currently, the most widespread industrial application of APCNs is the formation of
silicone hydrogels for manufacturing contact lenses. This application is very stable
worldwide and millions of people are using it. Although contact lens manufacturing is
the largest representative of APCNSs, important advances have been made in recent
decades in applications as diverse as drug delivery [6], tissue engineering [7] and

matrices for heterogeneous enzyme catalysis [8].



Taking into consideration the possible applications of APCN, one of the most
important challenges for its fruitful implementation in various applications is its
resistance to different pHs. The human body exhibits a wide range of pH levels across
various tissues, fluids, and compartments, each playing a vital role in physiological
functions. Understanding and accommodating these different pH environments is
crucial for biomaterials used in biomedicine to ensure their compatibility and

effectiveness within the diverse systems of the body [9].

The present work analyzes the physical and swelling properties of poly(methacrylic
acid)-l-polyisobutylene (PMAA-I-PIB, | = “linked by”) amphiphilic polymer conetworks
through three different environments, basic, neutral, and acidic in the presence of a
relatively high concentration of potassium chloride (0.05 M) in order to keep the ionic

strength constant during all the measurements.



I. Literature overview and background
[I.1. Amphiphilic polymer conetworks

Polymer gels are defined as three-dimensional networks, which are insoluble but able
to swell by appropriate solvents. It's important to note that the crosslinked polymer
matrix never reaches an infinite dilution. The resulting gels, obtained by swelling
polymer networks, are wet and soft, and unlike solid materials, these can undergo
large deformation. Most of mammalian tissues are highly agueous gel materials
formed by proteins, polysaccharides and water [10]. There are multiple ways to
classify gels including by the constituent polymers and by the crosslinkage, but the

most common and used one is by its swelling material.

Considering that the polymer networks works as a host for a fluid that fill the
interstitial space of the network, the fluid can be liquid (hydrogel, organogel, liogel,
alcogel), gas (xerogel, aerogel) and solid (polymer — gel polymer, gel-gum) [11]. The
most widely used polymer gels worldwide are hydrogels, which swell in water,
however, in recent years, due to its attractive swelling properties in both hydrophilic
and hydrophobic solvents, amphiphilic conetworks (APCNs) have drawn worldwide

attention.

A simplified definition presented by Erdodi and Kennedy [5,13], defines APCNs as
hydrogels which also swell in hydrocarbons. The main characteristic of these materials
is the presence of hydrophilic and hydrophobic polymer chains in the polymer matrix,

linked by covalent bonds.

The main difference between conetworks and copolymer networks is found in the
continuity of the phases. The copolymer networks present randomly dispersed
hydrophilic and hydrophobic monomeric units, but the polymer as macroscopic object
does not present amphiphilic characteristics. In the amphiphilic conetworks, the HI/HO

phases are arranged into separate phases rather than being randomly dispersed [12].

In the middle of Figure 1, it is presented how APCNSs appear in the dry state [13].
In the presence of a common solvent, both phases swell, however, when exposed to
a hydrophilic or hydrophobic solvent, only the soluble phase will swell while the
insoluble phase will collapse trying to precipitate and separate from its counterpart.



Nonetheless, due to the covalent bonds present, the APCNs will maintain its
continuity.

-"'o‘ o HI chain

-
"\~ HOchain

HI SOLVENT HO SOLVENT

Figure 1. The effect of solvents on morphology of APCNs (taken from Ref. 13).

The presence of hydrophobic segments in APCNs provides an increase in the
toughening of the polymer compared to a hydrogel formed only with hydrophilic
segments. The increase in toughening is related to the reduction in the equilibrium
aqueous degree of swelling, which compacts the material and provides certain degree
of rigidity [14].

Due to the extensive and growing development of APCNSs, various synthesis routes
have been developed for their formation. Among the most relevant, we can find the

following three major methods as described by Erdodi and Kennedy [13].

A) The random free radical copolymerization of monomers technique uses
telechelic macromonomers as crosslinkers and small monomers as starting

materials, and regarding how the radical is formed this process can be



B)

subdivided into thermally or photolytically initiated methods. Thermal initiation
uses azo or peroxy initiators to create the starting radicals and can use
hydrophilic or hydrophobic comonomers, always using a crosslinker of opposite
nature and a good solvent for both monomers and crosslinker to complete the
production APCNSs [4,8,24-27]. This technique is well known and widely used
due to its simplicity. Photoinitiation uses amphiphilic block copolymers and
hydrophilic segments with vinyl carbonate end groups to facilitate the photo-
crosslinking [8]. Contact lens manufacturers extensively employ this technique,
which serves as the primary method for synthesizing the majority of
commercially available APCNSs.

lonic sequential living polymerizations are characterized by its precision and
ability to produce polymers with well-defined structures. In this technique,
amphiphilic block copolymers are synthesized and the crosslinker is added at
the end [5].

C) The chemical combination of hydrophilic and hydrophobic prepolymers

technique involves the synthesis of APCNs by blending or chemically bonding
together components that exhibit hydrophilic and hydrophobic properties. By
carefully combining these pre-existing polymers or polymer precursors, it is
possible to create new materials with amphiphilic character. For this method,
only those hydrophilic and hydrophobic functionalized polymers can be applied
which have common solvent, and then be merged using crosslinking agents or

direct crosslinking of the components [3,17].

Due to their capacity to attract both hydrophilic and hydrophobic substances,

A)

APCNs have diverse applications across numerous fields. They are extensively
utilized in drug delivery systems, facilitating precise and controlled release by
encapsulating and transporting both water-soluble and insoluble drugs [15]. In the
realm of biomaterials, they contribute to crafting surfaces that interact favorably with
biological elements, supporting advancements in tissue engineering and implants.
Some reasons why they are considered advantageous in relation to other materials
are [16]:

Biocompatibility of these materials can be tailored to mimic biological

environments, making them a suitable alternative for implants, drug delivery



systems, and tissue engineering without causing adverse reactions within the
body.

B) Targeted delivery is related to their capacity to encapsulate both water-soluble
and insoluble substances, which allows for accurate and regulated
administration of therapeutic agents/drugs to targeted areas, improving the
efficacy of drugs while reducing potential side effects.

C) Controlled release is also an important aspect of APCNs, because hey enable
the regulated dispensing of drugs or bioactive molecules, ensuring a consistent
and prolonged therapeutic impact, which is vital for managing chronic
conditions or aiding in tissue regeneration.

D) Versatile design, as explained before, means the high variety of possible
synthesis methods, which provides APCNs the possibility of customization for

various biomedical applications by ensuring biocompatibility.

APCNs also serve in coatings, forming protective layers with unique wetting
properties [17,18], and in environmental remediation, aiding in tasks like oil spill
cleanup by regulating the oil/water interface mobility and altering the viscosity of heavy
oils [19].

One of the most interesting APCNSs is poly(methacrylic acid)-I-polyisobutylene
(PMAA-I-PIB). The PMAA component in these conetworks is an anionic polyelectrolyte
which cannot be molded and has high water sensitivity. It has a glass transition
temperature between 403 and 458 K depending on the molecular weight of the
sample. This is a biocompatible polymer, and used already in drug formulations, such
as Eudragit® polymers and their compositions, to prevent decomposition of acid
sensitive drugs in the stomach. The three most commonly used preparation
techniques to obtain PMAA are free radical polymerization of methacrylic acid in water
or methyl ethyl ketone, hydrolysis of poly(methacrylic anhydride) and hydrolysis of
esters [20]. Its applications as homo- and copolymer are quite diverse, ranging from
pH sensors [21], drug delivery [22] and metal ion removal [23]. However, PMAA's
applications are limited by its low chemical and physical resistance. The other
component is polyisobutylene (PIB), which is a fully saturated, highly hydrophobic
polymer with high chemical and mechanical resistance, with a glass transition
temperature in the range of 210 K. Its molecular structure, excellent impermeability to

gases and moisture, and biocompatibilty makes it valuable in different fields of



applications, such as the inner liner of tubeless tires and biomedical devices. PMAA-
[-PIB is an APCN previously reported in various research papers [24,25,27,38].

Due to the lack of a common solvent between MAA and PIB, the free radical
macromonomer method was employed using methacrylate-telechelic PIB (MA-PIB-
MA) previously synthesized in the Polymer Chemistry Research Group and
(trimethylsilyl)methacrylate (TMSMA) as starting materials and azobis(isobutyronitrile)
(AIBN) as initiator in tetrahydrofuran (THF). This was followed by the removal of the
TMS protecting group by HCI solution, which leads to the the desired MAA monomer
units in the conetwork. At the end of the synthesis, the result is an APCN that contains
PIB as its lipophilic part, which provides mechanical and chemical stability to the

sample, along with PMAA as hydrophilic component [24].
II.2. Swelling of crosslinked polymers

The swelling degree or the swelling ratio pertains to the expansion in mass, volume or
dimensions of a substance caused by absorbing a solvent. When a solvent interacts
favorably with a polymer, it leads to the solvation of polymer chains. The stretching
occurs due to factors like crosslinking density, network architecture, and the interaction
between the polymer and solvent, resulting in a mechanical force acting upon the
stretched polymer [28]. Its measurement helps to comprehend how polymers interact
with different solvents and reveals information about the polymer's structure, porosity,
and its response to external conditions. The knowledge of swelling behavior is crucial
in environmental applications, especially in the context of absorbent materials used in

waste management, pollution control or biomedicine.

According to the Flory-Rehner theory, one of the most well-known models
based on the Gaussian chain model, when a polymer faces a swelling process in a
favorable solvent, there are two forces that govern the process, the elastic energy
required to stretch the polymer chains and the mixing free energy associated with the
polymer and solvent. The elastic section of the free energy is determined by the chains
that are effective in elasticity, significantly affected by the structure, concentration
during preparation, and concentration during measurement of the initial polymer [29].
In contrast, the mixing segment of free energy is controlled by osmotic pressure,

exclusively affected by the polymer concentration during measurement.



Figure 2 represents the two phenomena which occur simultaneously during the
swelling process. On the one hand, the solvent molecules (blue circles) enter the
polymer matrix and occupy more and more volume within the sample, while the
crosslinks (red circles) move further apart until the equilibrium is reached. This
increase in volume generates an accumulation of elastic energy in the crosslinked

polymer matrix.

Dry APCN Swelling Equilibrium swelling

Figure 2. Schematic diagram of the swelling process of polymer networks from the dry state

until it reaches the swelling equilibrium

To carry out a swelling study, it is necessary to determine the initial dry mass
(or volume) of the polymer network to be analyzed. Then, the network is immersed in
a desired solvent for a predetermined time period, followed by weighing to determine
the mass of the swollen polymer network. The equation used for the determination of

the swelling degree (Q) is the following:

Q=-—¢ (1)

mgq
where mq and m; represent the weights of the dry and swollen networks, respectively.

Amphiphilic conetworks from low, that is, few percent, to very high (over 1000%)
swelling capacity in both hydrophilic and hydrophobic solvents have already been
reported in the literature [13,24,25,38]. Because of the presence of a relatively large
fraction of hydrophobic polymer component in APCNSs, their swelling behavior and

mechanical properties in aqueous media are especially important. However, according
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to the best of our knowledge, systematic mechanical property investigations of swollen
APCNSs have not been reported in the literature so far.

[1.3. Elastic modulus of polymer networks

The elastic modulus, also known as Young's modulus, is a measure of a material's
stiffness or its resistance to being deformed when a force is applied. It describes how
much a material will deform under stress and then return to its original shape once the
stress is removed. It is determined by comparing stress to strain within a material's
elastic limit. The elastic modulus (E) reflects the relationship between stress (o), which
represents the force applied over a specific area, and strain (g), indicating the resulting

deformation or change in length relative to the original length.

Mdef*g

c = == 2)

A

Stress can be represented as force/area, which taking into consideration Newton's
second law, generates the result presented in equation 2, where mger is the load
expressed in Kilograms, g is the gravity and A is the area. Using the Neo-Hookean
model, the relative strain (1) is defined as the difference between the size of the strain
() and the initial height of the sample (lo). To obtain the elasticity modulus (E), the
stress values are plotted as a function of —()\— (1/7\2)), and the slope of the line

generated by the linear fit is the modulus of elasticity [30].

The crosslinks of APCNs keep the strands of the polymer chains from displacing
very far from their initial positions during a disturbance and prevent the flow of polymer
strands relative to each other, thus the material can recover its original structure [31].
Controlling the elastic modulus of APCNSs is crucial across numerous applications,
allowing tailoring of mechanical properties to match the requirements of specific
biological, medical, or engineering contexts. By adjusting the modulus, APCNs can be
optimized to interact effectively with biological systems or fulfill mechanical functions

in various applications.
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II.4. The Korsmeyer-Peppas evaluation of swelling

The Korsmeyer-Peppas model is utilized for explaining the liberation of substances,
such as drugs, from and the diffusion of solvents in polymeric structures. It is especially
used for scenarios where the discharge process does not neatly fit into traditional

models such as Fickian diffusion or zero-order kinetics [32].

e - ggn (3)

mo

Equation 3 represents Korsmeyer-Peppas equation, where m;and mo represent
the mass of the swollen and dry materials over time (t), respectively, K is defined as
the swelling constant, and finally n is the swelling exponent. The value of n can provide
the following interpretation [33]:

e n = 0.5, Fickian diffusion — controlled release in case of encapsulated drugs;

e 0.5 < n <1, non-Fickian or anomalous transport, indicating a diffusion and
another mechanism (swelling, erosion, relaxation of polymer chains) which
contribute to release;

e n =1, characteristic of the so called case Il transport which indicates a zero-
order release kinetics for drugs encapsulated in gels;

e n>1, mightinvolve a super case Il transport that suggest a combination of the

swelling, erosion, relaxation of polymer chains, etc.

The Korsmeyer-Peppas model finds wide application in pharmaceutical sciences for
comprehending and forecasting the discharge of drugs from diverse formulations like
tablets, capsules, patches, salts, and nanoparticles [34]. It empowers researchers to
scrutinize and enhance drug delivery systems by gaining insights into the kinetics of

swelling, drug release and the underlying mechanisms.
I1.5. Diffusion coefficients

Diffusion is the process by which molecules, particles or substances move from areas
of higher concentration to areas of lower concentration, driven by the natural tendency
of particles to spread out and reach equilibrium. The diffusion coefficients in APCNs
involve measuring the rate at which molecules or solutes move in or through the
polymer matrix. Some of the principal factors that affect the diffusion coefficient are as

follows:

12



e Amphiphilic nature: Controls how the segments interact with the molecules
that diffuse inside the network.

e Network structure: The crosslinking density limits the mobility within the
structure. A highly crosslinked polymer tends to have diffusion problems,
and in such cases usually the pore size affects the movement of the

molecules.

Mathematical models, such as Fick's laws of diffusion or more complex models
considering non-Fickian behavior can be implemented to determine the diffusion
coefficients. However, other methods like the short time approximation method can

also be implemented with relative reliability.

I1.6. Effect of salts on polymer gels

The use of several prominent homopolymers or polyelectrolytes in biomedicine and
various fields may be limited due to the undesirable interaction that these materials
undergo with biologically relevant salts (low or high concentrations). For example,
poly(acrylic acid), poly(methacrylic acid) or polyalginates [35,36], when in contact with
bi- or multivalent metal ions, present phase transitions, which vary between
precipitation and collapse for linear polymers and gels, respectively. Although, these
properties may be desired for certain applications, in the biomedical and
environmental fields they greatly limit the applicability of these materials. Articles such
as the one presented by Horkay et al. describe how hydrogels could be affected with
a drastic reduction in their swelling ratio depending on the ion valence and its

concentration [37].

The human body contains a variety of ions, and one of the most prevalent ones is
sodium ion (Na*). This is important for nerve function and maintaining fluid balance.
Calcium ions (Ca?*) are essential for bone health, muscle contraction, and nerve

signaling. Potassium ions (K*) are crucial for nerve transmission and muscle function.

13



The interaction between PMAA-I-PIB conetworks and the first two mentioned ions,
that is, sodium and calcium ions, was analyzed by Kali and Ivan [38]. It was found that
these conetworks, in contrast to homopolymer polyelectrolyte conetworks [37], do not
undergo phase transition or network contraction even at high ion concentration, thus

opening its use to possible biomedical applications [38].

14



. Goals

As presented in the previous chapter, amphiphilic conetworks (APCNs) belong to a
special class of crosslinked polymers, in which otherwise immiscible hydrophilic and
hydrophobic polymer are connected to each other by covalent bonds. Swelling these
materials in water results in unique hydrogels with relatively high hydrophobic
contents. APCNs containing poly(methacrylic acid) as polyelectrolyte hydrophilic
component are expected to possess properties which can be utilized in various
application fields. While the synthesis of poly(methacrylic acid)-I-polyisobutylene
(PMAA-I-PIB) amphiphilic conetworks is well established, as presented in Section II,
the swelling behavior and especially the mechanical properties of these conetworks
have not been revealed fully yet. On the basis of these, the major aims of my work are

related to the followings:

(1) investigate the swelling of a series of PMAA-I-PIB amphiphilic conetworks,
samples of which already available in the Polymer Chemistry and Physics
Research Group of IMEC, HUN-REN RCNS, in aqueous solution with different pH
under constant ionic strength provided by potassium chloride solution;

(2) measure the compression mode stress-strain curves of the PMAA-I-PIB APCNs
in their state with equilibrium swelling degrees in order to obtain the modulus and
its dependence on the composition of the conetworks, the chemical nature of the
medium (pH) and the swelling degrees.

15



V. Materials, methods and equipment
IV.1. Materials

The PMAA-I-PIB APCN samples used in the experiments were prepared previously in
the Polymer Chemistry and Physics Research Group of IMEC, HUN-REN RCNS and
reported in the MSc Thesis of L. Zavoczki [27]. These can be categorized into two
groups depending on the polyisobutylene (PIB) used in their synthesis. The samples
listed in Table 1 are identified by names beginning with 8 were prepared using PIB
with a number average molecular weight of 8,000 g/mol (8k-PIB), while those starting
with 10 were obtained using PIB with Mn of 10,000 g/mol (10k-PIB). APCN samples
with both kind of PIBs were synthesized with a mass content percentage of 20, 30, 40,
50, 60, 70 m/m% of PIB.

Table 1. Materials used and their provider

Sample name co::tlsn/tp(mm %) Provider
8-20 20/80
8-30 30/70
8-40 40/ 60 .
8 - 50 50 /50 S,
8 - 60 60 /40 ?
8- 70 70/ 30 S
10-20 20/80 _g—
10 - 30 30/70 =
10 - 40 40/ 60 g
10 - 50 50/50
10 - 60 60 /40
10-70 70/30
Potassium chloride Sigma-Aldrich
Buffer pH (2 £ 0.05) Molar Chemicals
Buffer pH (7 £ 0.05) Molar Chemicals
Buffer pH (10 = 0.05) Molar Chemicals
H20 Distilled

16



IV.2. Swelling measurements

The swelling of the investigated PMAA-I-PIB samples were carried in buffer solutions
of pH 2, pH 7 and pH 10 containing potassium chloride with 0.05 M concentration in
order to provide constant ion strength. On the other hand, due to the physiological
importance of potassium ion, information can also be gained on the effect of this ion
on the swelling property of the PMAA-I-PIB conetworks. The mass of dry samples were
measured, and then samples were immersed in the buffer solution. At predetermined
time period, the swollen samples were removed, their surface PMAA-I-PIB were wiped
with a drying paper, and the mass of the sample was measured. Then, the samples
were immersed again in the buffer solution. This process was repeated at given times
until no significant mass increase was observed. This stage is taken as the equilibrium

swelling state.

IV.3. Equipment for modulus measurement

Figure 3. The TA.XTplusC Texture Analyzer [39]

The equipment used for the determination of the elastic modulus of the swollen APCN
samples was the TA. XTplusC Texture Analyzer from the Stable Micro Systems brand,

which according to the manufacturer tolerates a maximum force of 50 Kg, with speeds

17



between the range of 0.01 to 40 mm/s [39]. It operates by applying selected forces to
samples, simulating compression, tension, penetration, or other types of deformation
(Figure 3). The stress-strain curves of the APCN samples swollen to equilibrium were
measured by compression until 5% of height change was reached. The applied
deformation speed was 20 ym/s. The elastic moduli of the samples were obtained by

a linear fit on the highest compression range according to literature [42].

18



V. Results and discussion

V.1. Swelling degrees of PMAA-I-PIB conetworks in buffer solutions with
different pH

For the determination of swelling degree (Q) measurements, the samples underwent
a drying process within an oven under a vacuum environment until achieving a
consistent mass. Subsequently, the APCNs were immersed in a 25 ml 0.05 M KCI
solution, and their swelling degree over time was meticulously recorded. Considering
the dynamic nature of the swelling process, a comprehensive set of measurements
was conducted primarily on the initial day of experimentation. Sequential
measurements were continued until reaching a state of equilibrium. Furthermore, to
investigate the response of the APCNs, the samples were subjected to varying pH

environments (pH 2, pH 7, and pH 10).

PMAA-I-PIB

4500.00
4000.00
3500.00
3000.00
2500.00
2000.00
1500.00
1000.00

500.00 I I I
0.00 l ] - I - I —ml _.m I | - - I -l .=

Swelling degree (%)

mpH 2 (%) ®mpH7 (%) mpH 10 (%)

8-20 8-30 8-40 8-50 8-60 8-70 10-2010-3010-4010-5010-6010-70

Figure 4. The equilibrium swelling degrees of PMAA-I-PIB amphiphilic conetworks in buffer
solutions with different pH containing 0.05 M KCI

The swelling degree values were determined by using equation 1. Figure 4
shows the equilibrium swelling degrees for the samples measured at different pH. The
presented figure illustrates a notable trend where the equilibrium swelling degree (Qe)
of the APCNSs exhibits an increment corresponding to an increase in the solvent's pH,
observed consistently within both the 8k and 10k series. The equilibrium swelling

degree values obtained at pH 2 and pH 10 have a notable difference of around an
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order of magnitude. Likewise, the data demonstrates a substantial reduction in the Qe
values as the percentage of PIB increases within the samples, on the one hand. On
the other hand, the increase of the pH from acidic (pH 2) to neutral (pH 7) and basic
(pH 10) increases the equilibrium swelling degrees significantly. This behavior

is due to the increase in dissociated methacrylic acid groups in a basic medium.

Figures 5-7 show the change in mass measured over time for each series (8k
left and 10k right) of the swollen PMAA-I-PIB conetworks at different pHs. It is
important to mention that most of the increase in the swelling degrees occurs during
the first two days. From the third day onwards, although the sample is not yet in
equilibrium, the percentage of change is not as high as during the first two days.
Likewise, it can be clearly observed in these Figures how the percentage of PIB
substantially affects the final equilibrium swelling degrees, which are displayed in

Figure 5.
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Figure 5. Changes in the swelling degrees of PMAA-I-PIB conetworks over time in a pH 2
buffer solution containing 0.05 M KCl
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Figure 6. Changes in the swelling degrees of PMAA-I-PIB conetworks over time in a pH 7
buffer solution containing 0.05 M KCI
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Figure 7. Changes in the swelling degrees of PMAA-I-PIB conetworks over time in pH 10

buffer solutions containing 0.05 M KCI

The results of the swelling experiments at pH 2 and 7 agree with those obtained
by Zavoczki [27] in buffer solutions in the absence of any added salt, like KCI.
However, by comparing Figures 8 and 9 for pH 10, we can observe that the swelling
degrees of the samples in the presence of KCI, to provide constant ionic strength, is
lower significantly than that in a buffer solution without added salt. This is in
accordance with our expectations, since the presence of potassium and chloride ions
shields the charges of the dissociated methacrylate groups resulting in decreased

repulsion, that is, to decreased swelling capacity.
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Figure 8. Changes in the swelling degree of PMAA-I-PIB conetworks over time in a pH 10
buffer solution without KCI (retrieved from Zavoczki [27])

V.2. The evaluation of swelling by the Korsmeyer-Peppas equation

Taking equation 3 as a starting point, we proceed to define the swelling degree (Q) as
(m¢— mo)/mo (see equation 3) and make the following considerations. According to

equation 3,

Q =Kt" and thus InQ = InK + n Int

0.5 4

Equation y=a+bx

‘Weight No W eighting

Residual Sum of 0.27062
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Figure 9. The InQ values as a function of Int in the case of PMAA-I-PIB 8-20 at pH 2
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Figure 9 shows a representative graph of InQ versus Int, from which the value
of n and K are determined from the slope and the intercept of the linear fitting,
respectively. The final swelling degrees at high Q values were not taken into

consideration since these reflect the equilibrium swelling over time.

The values of n and K obtained for the samples are shown in Table 2. It can be
observed that except for specific exceptions, the value of the swelling exponent and
swelling constants decreases as the percentage of PIB increases. With few
exceptions, the samples evaluated at pH 2 and 7 present a swelling exponent value
greater than 0.5 and less than 1, which denotes a non-Fickian behavior. Fickian
diffusion refers to a predictable, linear, and consistent movement of molecules from
an area of high concentration to low concentration. However, in many real-world
scenarios, especially involving complex materials or systems, the diffusion behavior
does not strictly adhere to Fickian principles. Non-Fickian behavior describes
situations where the transport mechanism does not fit the classical Fickian diffusion
model. These values can be explained as a consequence of the slow relaxation rate
of the PMAA-I-PIB matrix [40].

Table 2. Swelling exponents and swelling constants of PMAA-I-PIB conetworks obtained for
swelling at pH 2, 7 and 10 in the presence of KCI (0.05 M)

Sample pH 2 pH 7 pH 10

n InK K n InK K n InK K

8-20 0.654 | 1.356 | 3.882 | 0.943 | 2.786 |16.215| 0.781 | 2.759 | 15.785

8-30 0.608 | 0.572 | 1.771 | 0.677 | 1.260 | 3.526 | 0.539 | 1.513 | 4.540

8-40 0.533 | 0.325 | 1.384 | 0.675 | 0.726 | 2.067 | 0.455 | 0.814 | 2.257

8-50 0.527 | 0.010 | 1.010 | 0.713 | 1.202 | 3.327 | 0.293 | 0.966 | 2.626

8 -60 0.601 | -0.072 | 0.931 | 0.502 | -0.371 | 0.690 | 0.291 | -0.054 | 0.947

8-70 0.516 | -0.469 | 0.625 | 0.522 | -0.830 | 0.436 | 0.281 | -0.419 | 0.658

10-20 | 0.684 | 1.266 | 3.546 | 0.727 | 2.292 | 9.893 | 0.586 | 3.088 | 21.934

10-30 | 0.640 | 0.726 | 2.067 | 0.682 | 1.563 | 4.772 | 0.416 | 1.618 | 5.041

10-40 | 0.637 | 0.667 | 1.947 | 0.673 | 1.133 | 3.105 | 0.366 | 1.041 | 2.832

10-50 | 0.623 | 0.566 | 1.761 | 0.673 | 0.386 | 1.470 | 0.377 | 0.419 | 1.521

10-60 | 0.506 | -0.292 | 0.746 | 0.591 | -0.029 | 0.971 | 0.304 | 0.063 | 1.065

10-70 | 0.330 | -0.916 | 0.400 | 0.538 | -0.609 | 0.544 | 0.277 | -0.310 | 0.734
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The values of n and K obtained for the samples are shown in Table 2. It can be
observed that except for specific exceptions, the value of the swelling exponent and
swelling constants decreases as the percentage of PIB increases. With few
exceptions, the samples evaluated at pH 2 and 7 present a swelling exponent value
greater than 0.5 and less than 1, which denotes a non-Fickian behavior. Fickian
diffusion refers to a predictable, linear, and consistent movement of molecules from
an area of high concentration to low concentration. However, in many real-world
scenarios, especially involving complex materials or systems, the diffusion behavior
does not strictly adhere to Fickian principles. Non-Fickian behavior describes
situations where the transport mechanism does not fit the classical Fickian diffusion
model. These values can be explained as a consequence of the slow relaxation rate
of the PMAA-I-PIB matrix [40].

V.3. Diffusion coefficients of water in swelling the PMAA-I-PIB conetworks

To determine the diffusion coefficients, there are experimental methods such as the
use of NMR or MRI, fluorescence techniques or steady-state diffusion cells [41], and
mathematical modeling methods such as Fick's laws, finite element analysis or curve
fitting. The “short time approximation method” is commonly used to determine an
approximated value of the diffusion coefficient (D) valid only at the first 60% of the
swelling degree range of the sample. For a cylindrical sample, generally the following

equation is applied.
pt \1/2 Dt (Dt
0=4(zz)" —m(ez)-5(R)+ ~ @

Where D represents the diffusion coefficients in cm? s, t is the time in s, Q is the
solvent fraction at time t in a sample with r radius. A semi-empirical relation with the
linear fitting was validated by Karadag et al. [32] and Saraydin et al. [40] on acrylamide
hydrogels. Figure 10 represents a graph of Q versus the square root of time, seeking
to obtain as a result the slope which provides the diffusion coefficient of water in the
sample. Taking into consideration that the model considers only up to 60% of the
swelling degrees, the values that were used for the determination of the diffusion

coefficient are those belonging to the first day of swelling of the samples since it is the
period where a greatest increase in the swelling degree is recorded.
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Figure 10. The swelling degree (Q) as a function of the square root of swelling time of
PMAA-I-PIB 8-20 sample swollen at pH 2

Table 3. The diffusion coefficients (in cm?s? x 10°) of water into PMAA-I-PIB conetworks
during swelling at pH of 2, 7 and 10

Sample pH 2 pH7 | pH10
8-20 1455 | 62.87 | 65.38
8-30 6.7 14.82 | 8.66
8 -40 5.75 8.7 5.42
8-50 4.29 | 10.23 | 12.61
8 - 60 3.01 2.9 3.29
8-70 2.06 1.58 2.19
10-20 | 12.87 | 42.68 | 56.62
10- 30 7.59 | 20.04 | 13.37
10 - 40 6.32 | 12.99 | 8.69
10 - 50 5.32 6.24 4.04
10 - 60 3.12 3.82 3.21
10-70 1.3 2 2.18
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Table 3 presents the diffusion coefficients of the APCNs at different pH ranges. As
with Figure 10, only the measurements made during the first day of swelling were
taken into consideration due to the model restrictions. The values obtained vary
between the range of 1.3 to 65.4 (x 10°° cm?/s), belonging to a pH of 2 with 70% PIB
and a pH of 10 with 20% PIB respectively. This confirms that the rate of diffusion of
water is higher for PMAA-I-PIB with low PIB contents and in solutions with higher pH

values.

V.4. Elastic modulus of the swollen PMAA-I-PIB conetworks

To assess the elastic modulus, samples at equilibrium swelling degrees were selected.
The determination of the samples’ perpendicular surface diameter, along with the
compression direction's height, was carried out right after removing the samples from
the solvent. The highest deformation for all the samples was set at 5% of their total
height, and the continuous deformation speed used was 20 um/s. To prevent the
samples from sticking to the machine, the surface perpendicular to the direction of
compression was covered with Teflon tape. The test was repeated until three almost
identical curves were obtained for each sample. The procedure was maintained for all
samples at both pH 2 and pH 7. The diameter and area details of the APCNs analyzed

are shown in Tables 6 and 7 in the Appendix section.

In Figure 11, we can see the stress versus —(A — (1/2%)) plot of PMAA-I-PIB
8-20 at pH 2. A linear fitting is applied for the larger stress-strain data range for the
three curves and the slope is determined using Origin Pro. As shown by Lee et al. [42],
the values of the first range of the curves are discarded until a linear behavior is evident
in the graph. Additionally, to facilitate the visualization of the linear fitting, the curves
have been vertically moved. The stress-strain curves of the rest of the swollen PMAA-
[-PIB conetwork samples are shown in Figures 14-36 in the Appendix.
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Figure 11. The deformation curves of the PMAA-I-PIB-820 sample swollen at pH 2

Table 4 shows the elastic modulus values of the PMAA-I-PIB APCNs swollen at

pH 2. Each sample has three measurements (a, b and c), and an average of these

measurements and the standard deviation are presented. The same procedure is

maintained for the samples swollen by a buffer solution with pH 7 and (Table 5).
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Table 4. The elastic moduli of PMAA-I-PIB conetworks swollen at pH 2

Elastic modulus (MPa)

Sample Standard
a b ¢ Average deviation

8-20 0.048 0.048 0.049 0.048 4.40E-04

8-30 0.151 0.153 0.159 0.154 3.49E-03

8-40 0.649 0.673 0.701 0.674 2.13E-02

8-50 0.554 0.569 0.580 0.568 1.08E-02

8-60 1.082 1.108 1.116 1.102 1.47E-02

8-70 1.206 1.235 1.247 1.229 1.69E-02

10-20 0.015 0.016 0.017 0.016 4.80E-04
10-30 0.148 0.152 0.164 0.154 6.95E-03
10 - 40 0.446 0.467 0.474 0.462 1.18E-02
10-50 0.883 0.904 0.937 0.908 2.22E-02
10 - 60 1.105 1.136 1.147 1.129 1.75E-02
10-70 1.615 1.631 1.651 1.632 1.46E-02

Table 5. The elastic moduli of PMAA-I-PIB conetworks swollen at pH 7

Elastic modulus (MPa)

Sample Standard
a b c Average deviation

8-20 0.002 0.002 0.002 0.002 3.90E-05

8-30 0.008 0.008 0.008 0.008 2.79E-04

8 -40 0.032 0.034 0.036 0.034 2.09E-03

8-50 0.023 0.024 0.023 0.024 6.84E-04

8-60 0.097 0.107 0.119 0.107 1.10E-02

8-70 0.135 0.139 0.142 0.139 3.17E-03

10 - 20 0.003 0.003 0.003 0.003 4.66E-05
10-30 0.018 0.018 | = ------ 0.018 4.58E-04
10 - 40 0.032 0.034 0.035 0.034 1.79E-03
10 - 50 0.044 0.046 0.049 0.046 2.37E-03
10 - 60 0.078 0.082 0.084 0.081 3.01E-03
10-70 0.154 0.165 0.173 0.164 9.68E-03

28




Figure 12 presents a direct comparison of the elastic moduli of the PMAA-I-PIB
samples swollen at pH 2, 5.5 (obtained by Z&voczki [27]) and 7. We can clearly
observe that, except for some atypical values the elastic modulus of the APCN
decreases with increasing pH, this phenomenon is closely related with the swelling
degree of the samples, that is, higher the pH of the aqueous solution, lower the

modulus.

Elastic modulus
1.800
1.600
1.400
1.200

1.000

0.800

0.600

0.400 | | |

0.200 I

INSRR P | | | N | CT RN RN RN MM

8-20 8-30 8-40 8-50 8-60 8-70 10-20 10-30 10-40 10-50 10-60 10-70

MPa

EpH?2 mpHS55 mpH7

Figure 12. The elastic moduli of PMAA-I-PIB conetworks swollen in solutions
with pH 2,5.5and 7

Increasing the pH, it is observed that the samples retain a greater amount of
solvent within their structure, which causes the elastic modulus to decrease,
generating an increase in the flexibility and deformation capacity of the APCN. This
phenomenon remains stable regardless of the presence of KCI in the sample.
However, when increasing the pH to 10 in the presence of KCI (0.05 M), it was
observed that the mechanical stability of the swollen PMAA-I-PIB conetwork samples
was lost, that is the samples are disintegrated which limits their manipulation. In Figure
13, the PMAA-I-PIB8-20 sample swollen at pH 10 is shown after attempting to handle
for mechanical test, and it is clearly seen that its structural integrity disappeared, the
sample is broken. Therefore, mechanical tests with samples swollen at pH 10 could

not be carried out.
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Figure 13. The photo on the PMAA-I-PIB8-20 sample swollen at pH 10 after its disintegration
during the attempt for mechanical test
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VI. Summary

Amphiphilic conetworks composed of covalently linked immiscible hydrophilic and
hydrophobic polymer chains belong to a relatively new class of rapidly emerging
nanophase separated class of materials with various unique application possibilities.
Poly(methacrylic acid)-l-polyisobutylene (PMAA-I-PIB) amphiphilic conetworks
(APCNSs), one of the most interesting material in this class, having PIB content in the
range between 20% and 70%, swollen with potassium chloride (0.05 M) containing
aqueous buffer solutions with three different pH (2, 7 and 10) were characterized in
terms of their swelling behavior and mechanical properties. The determined quantities
were the swelling degrees as a function of swelling time and the elastic modulus. It
was found that the equilibrium swelling degrees increase with increasing pH and the
hydrophilic PMAA content, that is, decreasing the crosslinking density in these
conetworks. During the swelling tests, it was observed that there are two factors which
affect the equilibrium swelling degrees, the pH and the composition of these APCNs.
The maximum swelling degree was around 4000% with conditions of pH 10 and 20%
PIB content in the conetwork, possessing such superabsorbent capacity, which can
be utilized in several applications.

The Korsmeyer-Peppas relationship allowed to determine the values of the
swelling constant (K) and swelling exponent (n). These two values in overall are
related to the pH value of the buffer solutions and the PIB content in the samples. The
higher the pH, these values increase, but on the contrary, increasing the PIB content
in the conetworks reduces these values. A high value of K indicates a faster diffusion
rate of water in the conetworks. The n values at pH 2 and 7 indicate a non-Fickian
relation, which is presumably due to a combination of diffusion and other mechanisms
affecting the swelling of the PMAA-I-PIB conetworks by water under the investigated

conditions.

The determination of the elastic modulus was carried out by using a linear fitting
on a stress versus the —(A — (1/2?)) curves obtained for the PMAA-I-PIB conetwork

samples swollen at pH 2 and 7. It was observed that the elastic modulus decreases
with increasing swelling degrees, on the one hand. On the other hand, very broad
range of modulus is observed for the swollen PMAA-I-PIB conetworks, ranging from
0.002 MPa to 1600 MPa. This interesting result indicates that the strength of the
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PMAA-I-PIB conetworks can be preliminarily selected in this range depending on the

requirements of applications.

The main reasons behind the elastic modulus reduction due to pH increase are the

following:

e With increasing pH, ionization (dissociation) of the PMAA component occurs,
leading to increased electrostatic repulsion between the polymer chains. This
repulsion can cause the conetwork to expand, that is, to swell, leading to a
decrease in the elastic modulus. The increased distance between polymer
chains reduces their effective interactions, making the material less stiff.

e The pH change can affect the hydration state or the degree of ionization of the
acidic functional groups on the polymer chains, leading to changes in chain

flexibility and mobility.

The relationships between the composition of the PMAA-I-PIB conetworks, their
swelling behavior and mechanical properties enable tailored adjustments of the
properties of these materials. As a consequence, on the basis of the results of this
study, selecting the proper composition for requirements of targeted applications in

relation to water uptake and mechanical property (softness) is possible from now on.
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VIIl.  Appendix

Table 6. Parameters used to determine the elastic modulus of PMAA-I-PIB at pH 2

Sample Diameter Height Area2
(mm) (mm) (mm)
8-20 17.70 4.60 246.06
8-30 15.85 8.26 197.31
8-40 14.55 7.95 166.27
8-50 13.35 3.87 139.98
8-60 12.57 4.83 124.10
8-70 11.98 4.98 112.72
10- 20 18.23 8.96 261.01
10 - 30 16.54 8.18 214.86
10 - 40 15.02 6.85 177.19
10 - 50 13.63 7.79 145.91
10 - 60 13.10 6.24 134.78
10-70 12.16 6.57 116.13

Table 7. Parameters used to determine the elastic modulus of PMAA-I-PIB at pH 7

Sample Diameter Height Area2
(mm) (mm) (mm)
8-20 26.16 9.53 537.48
8-30 22.69 8.26 404.35
8-40 20.07 7.95 316.36
8 -50 19.36 3.87 294.37
8 - 60 15.37 4.83 185.54
8-70 14.19 4.98 158.14
10 - 20 29.77 8.96 696.06
10- 30 24.86 8.18 485.39
10 - 40 21.92 6.85 377.37
10 - 50 18.93 7.79 281.44
10 - 60 16.31 6.24 208.93
10-70 14.42 6.57 163.31
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Figure 14. The deformation curves PMAA-I-PIB-830-pH2
70000
E Equation y=a+bx
Weight No Weighting
Residual Sum of 220127E7 3.90365E7 37861E7
60000 I gg:ra;:i‘sr 0.99985 0.99976 0.99979
i Adj. R-Square 0.9997 0.99952 099957
Value Standard Error
500004 | Sope T amsaniy  raiie
1P Sose st 4 157
¢ Intercept -13028 5596 3598453
40000 i Slope 700756.00516 43450117
= )
Q. 30000 - }
o 1
20000
/’Tx"’“
] o
e
10000 - P
] .ﬂ*‘ﬁﬂf
pnl
0 -
T T T T T T T T T 1
0.00 0.02 0.04 0.06 0.08 0.10

-(A-1/A2)

Figure 15. The deformation curves PMAA-I-PIB-840-pH2
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Figure 16. The deformation curves PMAA-I-PIB-850-pH2
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Figure 17. The deformation curves PMAA-I-PIB-860-pH2
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Figure 18. The deformation curves PMAA-I-PIB-870-pH2
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Figurel9. The deformation curves PMAA-I-PIB-1020-pH2
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Figure 21. The deformation curves PMAA-I-PIB-1040-pH2
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Figure 22. The deformation curves PMAA-I-PIB-1050-pH2
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Figure 23. The deformation curves PMAA-I-PIB-1060-pH2

43



250000

Equation
Weight
Residual Sum of
Squares
Pearson’s

Adj. R-Square

200000

a
b

c

150000

¥=a+b'x

No Weighting
2.06049E8 154002E8  1.93334E8
0.99992 099994 0.99993
099934 099938 0.99936
Value Standard Error
Intercept 969.78211 51.98637
Slope 1.61484E6 545 60604
Intercept 289916344 4507462

Slope

Intercept

Slope

1.63101E6 473.06603
311889914 49.52877
1.65066E6 520.95223

G (Pa)

100000

50000 ~

04

——
-0.02  0.00

0.02

T ——
0.04 0.06

T
0.08

“(A-1/A2)

0.10

0.12

0.14

Figure 24. The deformation curves PMAA-I-PIB-1070-pH2
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Figure 25. The deformation curves PMAA-I-PIB-820-pH7
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Figure 26. The deformation curves PMAA-I-PIB-830-pH7
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Figure 27. The deformation curves PMAA-I-PIB-840-pH7
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Figure 28. The deformation curves PMAA-I-PIB-850-pH7
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Figure 29. The deformation curves PMAA-I-PIB-860-pH7
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Figure 30. The deformation curves PMAA-I-PIB-870-pH7
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Figure 31. The deformation curves PMAA-I-PIB-1020-pH7
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Figure 32. The deformation curves PMAA-I-PIB-1030-pH7
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Figure 34. The deformation curves PMAA-I-PIB-1050-pH7
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Figure 35. The deformation curves PMAA-I-PIB-1060-pH7
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Figure 36. The deformation curves PMAA-I-PIB-1070-pH7

50



FigyelmeztetésA kitoltétt Nyilatkozamemmenthet el, csakkinyomtathaté! Nyomtatas

NYILATKOZAT

Név: Edwin Steven Reyes Jacome
ELTE Természettudomanyi Kar, szak: Materials Science MSc
NEPTUN azonosito: DHDB3B

Diplomamunka cime:
Mechanicabpropertiesof swollenpoly(methacrylicacid)-I-polyisobutyleneonetworks

A diplomamunka szerzdjeként fegyelmi felelésségem tudataban kijelentem, hogy a
dolgozatom 0nallo szellemi akotdsom, abban a hivatkozasok ¢és idézések standard

szabalyait kovetkezetesen alkalmaztam, masok altal irt részeket a megfeleld idézés nélkiil

nem hasznaltam fel.

Budapest, 2024-01-02

a hallgato aldirdsa


ReyeEdwi
Stamp


	Dátum: 24-01-02
	Text1: Figyelmeztetés! A kitöltött Nyilatkozat nem menthető el, csak kinyomtatható!
	Button1: 
	Név: Edwin Steven Reyes Jacome
	Szak: Materials Science MSc
	Diplomamunka címe: Mechanical properties of swollen poly(methacrylic acid)-l-polyisobutylene conetworks

	NEPTUN azonosító: DHDB3B


